General Instructions:

i) Approximately 15 minutes is allotted to read the question paper and revise the answers.
ii) The question paper consists of 18 questions.
iii) All questions are compulsory.
iv) Internal \& general choice have been provided in some questions.
v) Marks allocated to every question are indicated against it.
N.B: Check to ensure that all pages of the question paper is complete as indicated on the top left side.

Section - A

1. Choose the correct answer from the given alternatives.

(a) If α and β are the zeroes of the polynomial $f(x)=p x^{2}-2 x+3 p$ and $\alpha+\beta=\alpha \beta$ then the value of p is
(i) $-\frac{2}{3}$
(ii) $\frac{2}{3}$
(iii) $\frac{1}{3}$
(iv) $-\frac{1}{3}$
(b) The pair of equations $x+y-40=0$ and $x-2 y+14=0$ have
(i) a unique solution.
(ii) exactly two solutions.
(iii) infinitely many solutions.
(iv) no solution.
(c) If $x=1$ is a common root of $a x^{2}+a x+2=0$ and $x^{2}+x+b=0$, then $a b=$
(i) 1
(ii) 2
(iii) 3
(iv) 4
(d) If sum of the first five terms of an AP is 30 and the $5^{\text {th }}$ term is 10 , then the sum of the first four terms of the AP is
(i) 5
(ii) 10
(iii) 20
(iv) 30
(e) If $\tan 2 \theta=\cot \left(\theta+15^{\circ}\right)$, where 2θ and $\left(\theta+15^{\circ}\right)$ are acute, the value of θ is
(i) 22°
(ii) 25°
(iii) 30°
(iv) 35°
(f) y-axis divides the join of $\mathrm{P}(-4,2)$ and $\mathrm{Q}(8,3)$ in the ratio
(i) $3: 1$
(ii) $1: 3$
(iii) $2: 1$
(iv) $1: 2$
(g) If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80°, then $\angle \mathrm{POA}$ is equal to
(i) 50°
(ii) 60°
(iii) 70°
(iv) 80°
(h) An arc of a circle is of length $5 \pi \mathrm{~cm}$ and the sector it bounds has an area of 20π cm^{2}. The radius of the circle is
(i) 16 cm
(ii) 12 cm
(iii) 8 cm
(iv) 4 cm
(i) The ratio of the total surface area to the lateral surface area of a cylinder with base radius 80 cm and height 20 cm is
(i) $2: 1$
(ii) $3: 1$
(iii) $4: 1$
(iv) $5: 1$
(j) Two dice are rolled once. The probability of getting such numbers on two dice, whose product is a perfect square, is
(i) 8
(ii) $\frac{1}{8}$
(iii) $\frac{9}{2}$
(iv) $\frac{2}{9}$

Section - B

2. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march?
3. Find the value of k for the quadratic equation $k x(x-2)+6=0$ has equal roots.
4. Find the values of y for which the distance between the points $\mathrm{P}(2,-3)$ and $\mathrm{Q}(10, y)$ is 10 units.
5. In the adjoining figure, $\triangle \mathrm{ABC}$ is a right triangle in which $\angle \mathrm{B}=90^{\circ}$ and $\mathrm{BD} \perp \mathrm{AC}$. If $\mathrm{AB}=x$ units, $\mathrm{BC}=y$ units and $\mathrm{AC}=z$ units, then find BD .

6. The length of the minute hand of a clock is 14 cm . Find the area swept by the minute hand in 5 minutes.

Section-C

7. Answer any three from the following questions (a) to (e).
(a) On dividing $x^{3}-3 x^{2}+x+2$ by a polynomial $\mathrm{g}(x)$, the quotient and remainder were $(x-2)$ and $(-2 x+4)$ respectively. Find $g(x)$.
(b) Meena went to a bank to withdraw ₹2000. She asked the cashier to give her $₹ 50$ and ₹ 100 notes only. Meena got 25 notes in all. Find how many notes of ₹50 and ₹ 100 she received.
(c) Solve the following pair of linear equations by cross-multiplication method:

$$
\begin{gathered}
x-3 y-7=0 \\
3 x-3 y-15=0
\end{gathered}
$$

(d) A train travels 360 km at a uniform speed. If the speed had been $5 \mathrm{~km} / \mathrm{h}$ more, it would have taken 1 hour less for the same journey. Find the speed of the train.
(e) A sum of ₹ 700 is to be used to give seven cash prizes to students of a school for their overall academic performance. If each prize is ₹ 20 less than its preceding prize, find the value of each of the prizes.
8. Answer any two from the following questions (a) to (d).
$2 \times 3=6$
(a) In triangle ABC , right angled at B , if $\tan \mathrm{A}=\frac{1}{\sqrt{3}}$, find the value of $\cos A \cos C-\sin A \sin C$, with the help of a right triangle.
(b) If $\sin (A-B)=\frac{1}{2}, \cos (A+B)=\frac{1}{2}, 0^{\circ}<A+B \leq 90^{\circ}, A>B$, find A and B.
(c) Prove that: $\frac{1+\sec \mathrm{A}}{\sec \mathrm{A}}=\frac{\sin ^{2} \mathrm{~A}}{1-\cos \mathrm{A}}$, where angle A is an acute angle.
(d) A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30° with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m . Find the height of the tree.
9. Case Study based question:

Four friends are seated at the points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D on a lawn keeping social distancing, as shown in the figure above. One more friend wants to join them and sit exactly at the middle position E on a straight line between A and C . Based on the above information, answer the following questions (i) to (iii).
(i) The distance between A and D is
(a) $\sqrt{72}$ units
(b) $\sqrt{73}$ units
(c) $\sqrt{74}$ units
(d) $\sqrt{75}$ units
(ii) The coordinates of the position of E are
(a) $\left(\frac{3}{2}, 3\right)$
(b) $\left(3, \frac{3}{2}\right)$
(c) $(6,3)$
(d) $(3,6)$
(iii) x-axis divides the distance/length between B and D in the ratio
(a) $3: 4$
(b) $4: 3$
(c) $5: 4$
(d) $4: 5$
10. a. Construct an isosceles triangle whose base is 8 cm and altitude 4 cm and then another triangle whose sides are $1 \frac{1}{2}$ times the corresponding sides of the isosceles triangle. (Traces of construction only is required.)

Or
b. Draw a line segment $A B$ of length 8 cm . Taking A as centre, draw a circle of radius 4 cm and taking B as centre, draw another circle of radius 3 cm . Construct tangents to each circle from the centre of the other circle. (Traces of construction only is required.)
11. a. A chord of a circle of radius 15 cm subtends an angle of 60° at the centre. Find the areas of the corresponding minor and major segments of the circle. [Use $\pi=3.14$ and $\sqrt{3}=1.73$]

Or

b. How many silver coins, 1.75 cm in diameter and of thickness 2 mm , must be melted to form a cuboid of dimensions $5.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 3.5 \mathrm{~cm}$?
12. Answer any two from the following questions (a) to (c).
(a) A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data:

Number of cars	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
Frequency	7	14	13	12	20	11	15	8

(b) The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:

Length (in mm)	$118-126$	$127-135$	$136-144$	$145-153$	$154-162$	$163-171$	$172-180$
Number of leaves	3	5	9	12	5	4	2

Find the median length of the leaves.
(c) A box contains 90 discs which are numbered from 1 to 90 . If one disc is drawn at random from the box, find the probability that it bears: (i) a twodigit number, (ii) a perfect square number, (iii) a number divisible by 5 .

Section - D

13. a. Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis and shade the triangular region.

> Or
b. Places A and B are 100 km apart on a highway. One car starts from A and another from B at the same time. If the cars travel in the same direction at different speeds, they meet in 5 hours. If they travel towards each other, they meet in 1 hour. What are the speeds of the two cars?
14. a. A statue, 1.6 m tall, stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal.

Or

b. A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After sometime, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.

15. a. State and Prove Pythagoras Theorem.

Or
b. Sides AB and BC and median AD of a triangle ABC are respectively proportional to sides PQ and QR and median PM of $\triangle \mathrm{PQR}$. Show that $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$.

16. a. In the adjoining figure, $X Y$ and $X^{\prime} Y^{\prime}$ are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ at B . Prove that $\angle \mathrm{AOB}=90^{\circ}$

b. In the adjoining figure, O is the centre of the circle and TP is the tangent to the circle from an external point T . If $\angle \mathrm{PBT}=30^{\circ}$, prove that BA: AT = $2: 1$
17. a. A gulab jamun, contains sugar syrup up to about 30% of its volume. Find approximately how much syrup would be found in 45 gulab jamuns, each shaped like a cylinder with two hemispherical ends with length 5 cm and diameter 2.8 cm .

Or

b. A container, opened from the top and made up of a metal sheet, is in the form of a frustrum of a cone of height 16 cm with radii of its lower and upper ends as 8 cm and 20 cm , respectively. Find the cost of the milk which can completely fill the container @ of ₹20 per litre. Also find the cost of metal sheet used to make the container, if it costs ₹ 8 per $100 \mathrm{~cm}^{2}$. [Take $\pi=3.14$]
18. a. The following distribution shows the daily pocket allowance of children of a locality. Find the mean pocket allowance by step-deviation method.

Daily pocket allowance (in ₹)	More than 11	More than 13	More than 15	More than 17	More than 19	More than 21	More than 23
Number of children	64	57	51	42	29	9	4

Or
b. The distribution of heights (in cm) of 96 children is given below:

Height (in cm)	Number of children
$124-128$	5
$128-132$	8
$132-136$	17
$136-140$	24
$140-144$	16
$144-148$	12
$148-152$	6
$152-156$	4
$156-160$	3
$160-164$	1

Draw a less than type cumulative frequency curve for this data and use it to compute median height of the children.

